A Universal Programmable Fiber Architecture for the Representation of a General Incompressible Linearly Elastic Material as a Fiber-Reinforced Fluid
نویسندگان
چکیده
Biological materials typically consist of elastic fibers immersed in an incompressible aqueous milieu. We consider the generality of an elastic material expressed as a fiberreinforced incompressible fluid. We show that, in the linear regime, any (possibly inhomogeneous and/or anisotropic) incompressible elastic material can be represented as a collection of fifteen families of straight, parallel elastic fibers embedded in an incompressible medium. We can choose these fiber directions to correspond to the fifteen diagonals of an icosahedron that connect the midpoints of its antipodal edges. This fiber architecture, together with the incompressible medium in which it is immersed, is universal and programmable in the sense that its elastic constants can be chosen to model any linear incompressible elastic material, without having to adapt the fiber architecture to the actual microstructure of the material. An explicit algorithm is given to compute the local elastic constants for each fiber direction in terms of the local components of the elasticity tensor. Optimality properties of the icosahedral fiber architecture are conjectured, and numerical evidence in support of these conjectures is presented.
منابع مشابه
The Elastic Modulus of Steel Fiber Reinforced Concrete (SFRC) with Random Distribution of Aggregate and Fiber
The present paper offers a meso-scale numerical model to investigate the effects of random distribution of aggregate particles and steel fibers on the elastic modulus of Steel Fiber Reinforced Concrete (SFRC). Meso-scale model distinctively models coarse aggregate, cementitious mortar, and Interfacial Transition Zone (ITZ) between aggregate, mortar, and steel fibers with their respective materi...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملA fiber-reinforced Transversely Isotropic Constitutive Model for Liver Tissue
Biomechanical properties of soft tissue, such as liver, are important in modeling computer aided surgical procedures. Experimental evidences show that liver tissue is transversely isotropic. In this article, considering the liver tissue as an incompressible fiber-reinforced composite with one family of fibers, an exponential strain energy function (SEF) is proposed. The proposed SEF is based on...
متن کاملRayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space
In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function. The general solution of the equation of motion is obtained, which satisfies the required radiation condition. The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...
متن کاملشبیه سازی عددی و تحلیلی پرتابه های فرسایشی سرعت بالا در اهداف بتنی مسلح به الیاف فولادی
In this paper, modeling of high speed projectiles with different nose shapes, penetrating into steel fiber reinforced concrete is investigated. This is a novel study because it considers the length to diameter ratio of steel fiber as well as projectile length to diameter ratio and volume fraction of fiber used in concrete matrix on the impact resistance of steel fiber reinforced concrete fibers...
متن کامل